Geometric Transformations

1.1 Explore building blocks of geometry

CCSS	4 - Mastery	3 - Proficient	2 - Basic	1 - Below Basic	0-No Evidence
Definitions of lines and angles (G.CO.1)	Can extend thinking beyond the standard, including tasks that may involve one of the following: - Designing - Connecting - Synthesizing - Applying - Justifying - Critiquing - Analyzing - Creating - Proving	Describe the following terms using points, lines, distance and circular arcs for all of the following: - Angles - Circles - Perpendicular Lines - Parallel Lines - Line Segments	Describe the following terms using points, lines, distance and circular arcs for $\underline{4}$ of the following: - Angles - Circles - Perpendicular Lines - Parallel Lines - Line Segments	Describe the following terms using points, lines, distance and circular arcs for $\underline{\mathbf{2}}$ of the following: - Angles - Circles - Perpendicular Lines - Parallel Lines - Line Segments	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

This standard may be reassessed in other reporting strands, as concepts are developed and taught.

Geometric Transformations

2.1 Explore with transformations

CCSS	4 - Mastery	3 - Proficient	2 - Basic	1 - Below Basic	$\mathrm{O} \text { - No }$ Evidence
Represent, describe and compare transformations (G.CO.2, G.CO.5)	Can extend thinking beyond the standard, including tasks that may involve one of the following: - Designing - Connecting - Synthesizing - Applying - Justifying - Critiquing - Analyzing - Creating - Proving	Draw and describe transformations of reflections, rotations, translations, and combinations of these, including mapping a figure onto another. Describe reflections, translations, and rotations as functions that take points on the plane as inputs and give other points as outputs Compare transformations that preserve distance and angles to those that do not	Draw or describe transformations of reflections, rotations, translations, and a combination of these, including mapping a figure onto another. Describe reflections and translations as functions that take points on the plane as inputs and give other points as outputs Describe transformations that preserve distance and angles to those that do not	Draw and describe a singular transformation of reflections and translations, including mapping a figure onto another. Given a function rule for reflections and translations, identify the outputs Identify transformations that preserve distance and angles to those that do not	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Describe symmetry (G.CO.3)		Describe and illustrate rotations and reflections of a rectangle, parallelogram, trapezoid, or regular polygon that carry each figure onto itself.	Describe or illustrate rotations and reflections of a rectangle, parallelogram, trapezoid, or regular polygon that carry each figure onto itself.	Describe or illustrate rotations or reflections of a rectangle, parallelogram, trapezoid, or regular polygon that carry each figure onto itself.	
Develop definitions of transformations (G.CO.4)		Develop the definition of all the terms rotations, reflections and translations in terms of: - Angles - Circles - Perpendicular lines - Parallel lines - Line segments.	Develop the definition for 4 of the terms rotations, reflections and translations in terms of: - Angles - Circles - Perpendicular lines - Parallel lines - Line segments.	Develop the definition for $\underline{2}$ of the terms rotations, reflections and translations in terms of: - Angles - Circles - Perpendicular lines - Parallel lines - Line segments.	

G.CO. 2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
G.CO. 5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
G.CO. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
G.CO. 4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

Geometric Transformations

2.2 Investigate and apply congruence definitions

	4 - Mastery	3 - Proficient	2 - Basic	1 - Below Basic	$\mathrm{O} \text { - No }$ Evidence
Predict and decide congruency (G.CO.6) Corresponding sides and angles (G.CO.7)	Can extend thinking beyond the standard, including tasks that may involve one of the following: - Designing - Connecting - Synthesizing - Applying - Justifying - Critiquing - Analyzing - Creating - Proving	Use descriptions of rigid motions to predict the effect of a rigid motions on a figure Use the definition of congruence in terms of rigid motions to: - decide if two given figures are congruent - prove that corresponding sides are congruent and corresponding angles are congruent in a pair of congruent triangles	Use descriptions of rigid motions to show the effect of a rigid motions on a figure Use the definition of congruence in terms of rigid motions to: - decide if two given figures are congruent - show that corresponding sides are congruent and corresponding angles are congruent in a pair of congruent triangles	Use descriptions of rigid motions to identify the effect of a rigid motions on a figure Use the definition of congruence in terms of rigid motions to: - decide if two given figures are congruent - identify that corresponding sides are congruent and corresponding angles are congruent in a pair of congruent triangles	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

G.CO. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
G.CO. 7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

